
Assignment 5 Report: Packing Puzzle
CSCE625, Spring 2022

Name: David van Wijk UIN: 932001896

1 Solution Approach

(a0) Preamble Although we were asked to use local search explicitly in the assignment, I was inspired
by the proof shown in [1] to see if I could determine if a packing existed, given only the height of the board
H and the length of the board L. Using a graph theory coloring proof, it can be shown that a board will
only have a solution if it’s dimensions satisfy the following two conditions:

1. (H ≥ 3) and (L ≥ 3)

2. (H*L)/20 (k collections of pieces) is even

If we think of the board as an H*L checkerboard, with alternate light and dark squares, and the pieces
are colored in this alternating way, we come to an interesting observation. It can be see that for all the
tetrominoes except for the “T” shape, it is possible for each piece to be colored with precisely 2 light and
2 dark squares. The T shaped tetrominoe however, can only be colored with either 3 dark squares and 1
light, or the opposite - 3 light and 1 dark. This is illustrated in the figures below.

Figure 1: Pieces colored in checkerboard pattern, excluding T shaped piece [1]

Figure 2: T shaped piece colored in checkerboard pattern [1]

When coloring the board in the checkerboard manner, the board will always have the same number of
dark and light colored squares. Therefore, for a perfect packing solution to exist, we need to be able to
have the same number of light pieces as dark pieces on in our set of puzzle pieces to fill the board exactly.
Since in either configuration shown in Figure 2, the T shaped piece will have an odd number of light and
dark pieces, the only way we can find a perfect packing for a given board, is if we have an even number of
T shaped pieces. It follows then, that since a valid solution is only satisfied if we used exactly k collections
of pieces, we have a valid packing solution for only even values of k. Therefore, to answer the prompt: “Is
there a way to pack exactly k collections of tetrominoes into the rectangle?” we only need to satisfy the
condition that k is even, and that both of the dimensions are greater than or equal to 3.

1

With all this said, I still implemented a local search algorithm to determine if a packing solution could
be found, because if the prompt was changed to: “How can you pack exactly k collections of tetrominoes
into the rectangle?” then the above method would get us nowhere. My code first determines if a packing
solution can be found using the above criteria, displays this information to the user, and then proceeds in
attempting to find the solution using local search.

(a) Representation Before diving into the details of my approach, I first wanted to explain the problem
representation. As has been the case in many assignments throughout the course, selecting a good method
to represent the problem is a very important step. I represented all of the possible rotations and reflections
across the axis of symmetry of each of the tetrominoes as 4x4 matrices, populated by ones or zeros. For
example, I would represent a T shape, with a single 90 degree rotation as:

1 0 0 0
1 1 0 0
1 0 0 0
0 0 0 0


The 4x4 matrix allows all the possible rotations and reflections of any of the pieces to be represented in

a uniform format, which helps with generalizing the code. The only key point is that each piece should be
contained in the 4x4 matrix as close to the top and left sides of the matrix as possible. This is because I
will use the (1,1) position of the 4x4 matrices to describe the location of the pieces. Thus, all the possible
orientations of the pieces can be represented with 19 4x4 matrices, and in my code I have kept these pieces
separate to ensure that we are using k collections of pieces (where k is given by (H*L)/20) to fill the board.
These 19 matrices are generated in the puzzlePieces.m function (subsection B.5).

The board is represented by an (H+3) by (L+3) matrix. The pieces are placed on the board according
to their grid location, and thus given the 4x4 matrices and their location on the board, it is fairly straight-
forward to generate the board (subsection B.2). The reason for the additional 3 rows and columns in the
board matrix is to allow for “overhang” where the pieces may be located at row H or column L, and thus
part of the piece could be “hanging off” of the H by L section of the board. With this representation,
the goal state will be all ones in the H by L section of the board, and 0’s in the remainder of the board.
Throughout the code and report I call this overhang section of the board the “gutter”.

(b) Algorithm To solve the packing puzzle problem, I used a stochastic local beam search algorithm,
with some slight modifications that will be highlighted throughout the report. I wrote everything from
scratch including all the necessary subfunctions to deal with creating the board representation, generating
the puzzle pieces, getting the successors, and evaluating the board.

The main script (subsection B.1) will prompt the user for the vertical board dimension, H and the
horizontal dimension, L. Then, before doing anything, the script checks the conditions described above,
and if H and L don’t satisfy those criteria, the script will return “No solution possible”. If we pass this
check, then we will initialize 50 random beams, where each beam represents k collections of puzzle pieces.
Using an evaluation function that will be described in paragraph (d) Heuristic, each collection of initially
random puzzle pieces is scored. Within each collection, we will have k*5 pieces, which are represented
by 4x4 matrices, with an associated (x,y) position corresponding to the location of that particular piece
on the board, and two identifiers which encode which type of piece it is (i.e. T, O, S/Z etc.) and which
version of that piece it is (i.e. rotated 90◦, reflected, etc.). I also then compute the score that would result
in a successful packing using the evaluation function, which is used in our end condition.

After the initial set of random beams are generated, we enter a while loop that will only terminate upon
finding a board that has the same score as the end condition score calculated above (or upon timeout).
Now, we finally begin the local beam search. For each beam, we iterate through each piece it contains,
and will generate 5 successors for each piece, generated through actions which are described in paragraph
(c) Action Space. Each successor to the piece will result in a new, slightly different board, which will be
evaluated using the evaluation function, and the score will be stored along with the new modified collection.
The terminating condition is checked here, and if any of the successors form a solution board, the while
loop will exit, and the script will display “Solution found in (number) beam iterations”, where (number)

2

is a count that keeps track of our iterations. This is done for all the pieces in all of the collections for all of
the beams, which will generate (number of beams)*(5*k)*5 successors. Each successor here is k collections
of pieces, with an associated score.

The successors are then sorted in ascending order, since a lower score indicates a better board. The
next set of beams are selected by choosing a certain proportion of beams randomly from the successors, and
the remainder of the beams are selected greedily. The proportion of randomly selected beams will decrease
with the number of iterations, with it starting extremely high, at a proportion of .9, and decreasing by .01
with each iteration, with a minimum random proportion of .1. I found this to be crucial to the performance
of the algorithm, since when I had a purely greedy beam selection, I quickly converged on one collection
of pieces. Of course this method doesn’t work so well if the number of beams is not fairly high, which is
why I generally kept the number of beams between 20 and 100 when testing the algorithm. The process
continues until we either achieve the goal state, or until the minimum score has remained the same for
20 iterations. If this is the case, we perform a random restart, populate our beams with entirely random
collections, and start again. This process will run until we reach the goal state, or until we reach the
timeout time, which can be specified in line 30 of the code in subsection B.1.

(c) Action Space The successors in our local search space will be generated using 5 possible actions for
each puzzle piece in k collections for each beam. For detailed code, please see subsection B.4.

1. Moves the piece up on the board by a random step between 1 and k slots

2. Moves the piece down on the board by a random step between 1 and k slots

3. Moves the piece right on the board by a random step between 1 and k slots

4. Moves the piece left on the board by a random step between 1 and k slots

5. Pick the next version of the current piece, in a cyclic pattern

It should be noted that the moves will only be executed if they do not take the piece out of the board
(i.e. the new piece location calculated by the action must be within the H x L matrix making up the valid
board). To expand further on action 5, we examine the piece we are generating successors for, and from
an ordered list of possible versions of that piece, we select the next in the list, or loop back to the first
possible version of the piece. For the T piece, we have 4 versions of this piece, and thus if the piece we are
generating successors for is the 3rd version of the T shape, one of the successors of that piece will be the
next version of that piece, without changing the location of the piece. In this way we are able to capture
all the possible types of movements, rotations and reflections as actions. The reason for making the step
of the movement of pieces range from 1 to k is so that the successors can be slightly more diverse, which
helped with addressing local minima. I also found it useful for the range of steps to scale with board size
for greater generality.

(d) Heuristic The heuristic is a cost function that is used to score each k collection of pieces that make
up a valid board. Here, the lower the score, the better the board, or closer to the solution the board is.
There are four components to the score which are enumerated below.

1. (c1): Cost associated with overlapping pieces which is calculated by the maximum number on the
board, times a tunable scalar value

2. (c2): Cost associated with gaps in the board (excluding the gutter). Sums up all the zeros on the
board, times some tunable scalar value

3. (c3): Cost associated with overlap in the gutter. This cost starts off very low and gradually increases
with the number of iterations. The idea here is to first allow pieces to move around more freely with
some overhang but slowly converge onto the tightly packed board

4. (c4): Reward associated with filled rows, which is largest for the lowest row. The purpose is to
incentivize filling from the bottom row first, which I found to be helpful. Since this is a reward, it
subtracts from the cost, as can be seen in Equation 1

3

ctotal = c1 + c2 + c3 − c4 (1)

It took quite a lot of trial and error to tune the scalars associated with each of the score components,
and I tried to do what I could to reduce the number of tunable parameters, in an attempt to make my
algorithm as general as possible. The specific values for the scalars associated with each component can
be found in subsection B.3.

2 Examples of Code

In Figure 3, we can see a few examples of the code being run where a solution is found just using local
search. We can also see in Figure 4 we display that a solution was found, but we’re unable to reach the
solution within 5 minutes using local search. In Figure 5 we are immediately able to discern that there is
no solution using the criterion outlined in section 1. I was able to directly find solutions for up to k = 3,
but exceeding this was very rare. I worked a lot on tweaking various parts of the functions to try to get
out of local minima, but these local minima were extremely persistent. I will discuss this more in the next
section. Technically though, I am able to answer the prompt for any H by L board.

Figure 3: Solution found using beam search for (4 by 10) and (5 by 8)

Figure 4: Solution found using criterion outlined in section 1

Figure 5: No solution possible

3 Running the Code

Running the code is very straightforward. If all of the required subfunctions are in the same directory as
the main script, all of which can be located in Appendix B, then the user must simply run assignment5.m,

4

and enter the desired H and L. If the aspect ratio is low enough that we’re able to find a solution, or even
if we don’t find a solution, the board can be visualized by the user by entering the following command into
the command prompt:

[board] = createBoard (k beam co l l e c t i on s {1 ,1} ,H,L)

Doing this will display lowest scored (i.e. best) collection on the (H+3) by (L+3) matrix with all the
pieces placed on the board. A solution will of course be a matrix of 1’s in the H by L area of the matrix,
and 0’s in the remainder of the matrix elements. Additionally, if you would like to know which pieces
are placed where, navigate to the workspace, and click on the cell array named k beam collections, where
the first element will be the “best” collection of pieces found. The cell array structure is documented
throughout the code.

4 General Notes

There were a number of things that I had to tune within my code to obtain some valid solutions.
Initially, I had a purely greedy search. However, I found that the beams converged on a single set of
k collections very quickly, and in order to prevent this I had to add stochasticity. I also had to tune
the heuristic quite a bit. Initially I had fixed scalars associated with the costs, but I found that adding
dependence on a “time” of some sort, like a counter associated with iterations was helpful for situations like
the gutter, where at first it is favorable to have pieces move around freely, but once we try to converge on
a solution, (ie. later in the beam search) we want to increase the gutter cost. I also added random restarts
which I found to be useful for smaller k collections, since sometimes the initial random configuration makes
it very difficult to find a solution, and the best thing may be to just restart all of the beams randomly from
scratch. Additionally, I had to tune the number of beams, and this was also quite important in finding a
solution. I later also added stochasticity to how the successors were generated because this too helped get
out of local minima. I also had some initial results using backtracking, but since Dr. Shell specified we
use local search, I didn’t use any backtracking in an attempt to solve this problem without keeping track
of a “path” of any sort. In theory this would also mean that my solution (if tuned better) would be able
to handle much larger board sizes that would crush backtracking solutions such as DFS. Overall, I think
that my solution suffers from having too many tunable parameters. I think this makes it more prone to
local minima, which is a downside to the solution.

5 Acknowledgments

For this assignment I discussed high-level concepts and methods to approach this problem with Matthew
Kocmoud and Moeez Akmal. I also discussed the proof for finding no solutions for certain values of k with
Hannah Lehman.

5

A References

References

[1] Talwalkar, Presh (2018). Can You Solve The Tetris Riddle?. Retrieved from
shorturl.at/tDHNX

6

shorturl.at/tDHNX

B Matlab Code

B.1 assignment5.m

%% Programming Assignment 5: Packing Puzzle

% CSCE625: Artificial Intelligence

% David van Wijk

%% Puzzle Piece Representation

% Represent pieces and all possible rotations using 4x4 matrices using 1'
s

% and 0's. Take rotations and reflections into account

[T_blocks ,I_blocks ,O_blocks ,J_L_blocks ,S_Z_blocks] = puzzlePieces ();

All_blocks = {T_blocks ,I_blocks ,O_blocks ,J_L_blocks ,S_Z_blocks };

%% Local Beam Search Algorithm

% Local search is not required to solve the problem - we can show that a

% packing solution exists if [k is even] AND [(H >= 3) AND (L >= 3)]

%

% Use local beam search to determine if pieces can be packed within given

% dimensions. Actions are for each block type , can select the type of

variation

% of block (ie. rotated , translated etc) or the (x,y) location on the

H = input('Please enter the vertical dimension , H: ');
L = input('Please enter the horizontal dimension , L: ');
k = (H*L)/20;

k_beam = 50;

pseudo_time = 0;

% How many times in a row we can repeat min score before random restart

max_repeated_min_count = 30;

% Timeout in seconds

maxTime = 60*5;

tic

base_board = zeros(H+3,L+3);

base_board (1:H,1:L)=ones(H,L);

[end_score] = evalBoard(base_board ,H,L,pseudo_time);

% We know there is a solution if it enters this loop

if (mod(k,2) == 0) && ((H >= 3) && (L >= 3))

disp('A solution exists! Trying to find it via beam search ...')
% Intialize k_beam collections randomly

% Each collection represents k sets of puzzle pieces (ie. k*5 pieces)

% Each collection has a score associated with it (2nd row)

k_beam_collections = cell(2,k_beam);

for z = 1: k_beam

% Contains a bunch of pieces and their (x,y) grid locations

collection = {};

% For k collections of pieces

7

for i = 1:k

% For each type of piece

for j = 1:size(All_blocks ,2)

% Pick location on the grid that each piece will have

grid_location = [randi ([1 L],1,1),randi ([1 H],1,1)];

% Pick orientation for each piece

num_orientations = size(All_blocks {1,j},2);

orientation_idx = randi ([1 num_orientations],1,1);

piece = All_blocks {1,j}{1, orientation_idx };

piece_idx = j;

rand_piece_mtrx = {grid_location ,piece ,piece_idx ,

orientation_idx };

collection{end+1} = rand_piece_mtrx;

end

end

k_beam_collections {1,z} = collection;

[board] = createBoard(collection ,H,L);

[score] = evalBoard(board ,H,L,pseudo_time);

k_beam_collections {2,z} = score;

end

% Perform local beam search

% We will generate k_beam *(5*k)*5 successors in each iteration

totalSuccessors = cell(2,k_beam *(5*k)*5);

doRun = 1;

last_best_score = 999;

count_repeated_sc = 0;

while doRun == 1 && toc < maxTime

% For each beam

for z = 1: k_beam

% Get 5 successors for each piece in each collection

for i = 1:size(k_beam_collections {1,z},2)

collection = k_beam_collections {1,z};

scores = zeros (1,5);

% Get the piece information

piece2Change = collection {1,i};

[successors] = getSuccessors(piece2Change ,All_blocks ,H,L)

;

successor_collections = cell (1,5);

for j = 1:size(successors ,2)

collection {1,i} = successors {1,j};

successor_collections {1,j} = collection;

[board] = createBoard(collection ,H,L);

[score] = evalBoard(board ,H,L,pseudo_time);

% End condition!

if score == end_score

8

disp(['Solution found in ' num2str(pseudo_time) '
beam iterations '])

doRun = 0;

break

end

scores(1,j) = score;

end

piece_idx = 5*k*(z-1)*5 + (5*i) -4;

piece_idx_next = 5*k*(z-1)*5 + 5*i;

totalSuccessors (1,piece_idx:piece_idx_next) =

successor_collections;

totalSuccessors (2,piece_idx:piece_idx_next) = num2cell(

scores);

end

end

% STOCHASTIC BEAM SEARCH

% chooses k successors at random , with the probability of

choosing

% a given successor being an increasing function of its value

% Random selection by percentage -- not scaled

rand_prop = .9 -(.01)*pseudo_time;

if rand_prop < .1

rand_prop = .1;

end

rand_beams = floor(k_beam*rand_prop);

greedy_beams = k_beam -rand_beams;

scores = cell2mat(totalSuccessors (2,:));

[sorted_scores ,sorted_idxs] = sort(scores ,'ascend ');

% Get k_beam *(1- rand_prop) best collections

selected_greedy_scores = 9999* ones(1, greedy_beams);

for i = 1: greedy_beams

for j = 1:size(sorted_scores ,2)

idx = sorted_idxs(j);

value = sorted_scores(j);

if ~ismember(value ,selected_greedy_scores)

break

end

end

selected_greedy_scores (1,i) = value;

k_beam_collections {1,i} = totalSuccessors {1,idx};

k_beam_collections {2,i} = value;

end

for i = (greedy_beams +1):k_beam

idx = randi ([1 size(totalSuccessors ,2)],1,1);

k_beam_collections {1,i} = totalSuccessors {1,idx};

9

k_beam_collections {2,i} = totalSuccessors {2,idx};

end

% For testing only:

[board] = createBoard(k_beam_collections {1,1},H,L);

min_score = min(scores);

if min_score == last_best_score

count_repeated_sc = count_repeated_sc + 1;

else

count_repeated_sc = 0;

last_best_score = min_score;

end

% RANDOM RESTART -- get k_beam new random beams

if count_repeated_sc > max_repeated_min_count

[board] = createBoard(k_beam_collections {1,1},H,L);

disp(['Beam is stuck at score of ' num2str(min_score) '...
randomly restarting '])

for z = 1: k_beam

% Contains a bunch of pieces and their (x,y) grid

locations

collection = {};

% For k collections of pieces

for i = 1:k

% For each type of piece

for j = 1:size(All_blocks ,2)

% Pick location on the grid that each piece will

have

grid_location = [randi ([1 L],1,1),randi ([1 H

],1,1)];

% Pick orientation for each piece

num_orientations = size(All_blocks {1,j},2);

orientation_idx = randi ([1 num_orientations],1,1)

;

piece = All_blocks {1,j}{1, orientation_idx };

piece_idx = j;

rand_piece_mtrx = {grid_location ,piece ,piece_idx ,

orientation_idx };

collection{end+1} = rand_piece_mtrx;

end

end

k_beam_collections {1,z} = collection;

[board] = createBoard(collection ,H,L);

[score] = evalBoard(board ,H,L,pseudo_time);

k_beam_collections {2,z} = score;

end

pseudo_time = 0;

end

% Keep a pseudo -time (ie. iteration count)

pseudo_time = pseudo_time + 1;

end

10

else

disp("No solution possible ")

end

if toc > maxTime

disp(['A solution is possible for this board! However , local search

timed out after ' int2str(toc /60) ' (min)'])
end

B.2 createBoard.m

function [board] = createBoard(pieces ,H,L)

% createBoard: Given k collections of pieces and (x,y) locations , will

generate a

% board which will be a (h+3)-by -(l+3) matrix

%

% INPUTS

% pieces (1-by-k*5) cell array , with each cell containing a

% (1-by -2) cell with (x,y) grid location and (4-by -4)

% matrix for piece representation

%

% OUTPUTS

% board (h+3)-by -(l+3) matrix representing orientation of k

% collection of puzzle pieces on the board

dimensions , plus

% additional room for the "gutter"

board = zeros(H+3,L+3);

for i = 1:size(pieces ,2)

piece = pieces{1,i}{1 ,2};

grid_location = pieces{1,i}{1 ,1};

board(grid_location (2):grid_location (2)+3, grid_location (1):

grid_location (1)+3)...

= board(grid_location (2):grid_location (2)+3, grid_location (1):

grid_location (1)+3) + piece;

end

end

B.3 evalBoard.m

function [score] = evalBoard(board ,H,L,pseudo_time)

% evalBoard: Score the inputted board made up of k collections of puzzle

% pieces

%

% INPUTS

% board (h+3)-by -(l+3) matrix representing orientation of

k

% collection of puzzle pieces on the board

dimensions , plus

% additional room for the "gutter"

% H y dimension

% L x dimension

11

% pseudo_time keeps track of "time"

%

% OUTPUTS

% score Scalar value evaluating board based on heuristic

%

%% Max overlap in main space

scalar_main = 1;

maxOverlap = sum(max(board (1:H,1:L)));

overlap_score = scalar_main *(maxOverlap);

%% Zeros in the main board are gaps which are bad

scalar_zeros = 2;

numZeros_main = length(find(board (1:H,1:L) == 0));

zeros_score = scalar_zeros*numZeros_main;

%% Overlap in gutter

scalar_gutter = .5;

maxGutter = sum([max(max(board(H+1:H+3,1:L))),max(max(board (1:H+3,L+1:L

+3)))]);

gutter_score = (scalar_gutter*pseudo_time)*(maxGutter)^2;

% gutter_score = (scalar_gutter)*(maxGutter)^2;

%% Reward (ie. negative score) for filled rows

filled_score = 0;

filled_scalar = .05;

full_row = ones(1,L);

for i = 1:H

if board(i,1:L) == full_row

filled_score = filled_score + i^2* filled_scalar;

end

end

%% Sum up and return total score

score = overlap_score + zeros_score + gutter_score - filled_score;

end

B.4 getSuccessors.m

function [successors] = getSuccessors(piece ,All_blocks ,H,L)

% getSuccessors: Will return valid sucessors given a piece and location

%

% INPUTS

% piece (1-by -4) cell with (x,y) grid location and (4-by -4)

% matrix for piece representation , idx corresponding

to

% the type of piece (ie. T,O,etc) and orientation idx

% corresponding to the orientation of type of piece

%

% All_blocks

%

% H

12

%

% L

%

% OUTPUTS

% (1-by -5) cell array containing 5 new sucessors of

the

% inputted piece , with each cell containing a (1-by

-4)

% cell with (x,y) grid location and (4-by -4)

% matrix for piece representation , idx corresponding

to

% the type of piece (ie. T,O,etc) and orientation idx

% corresponding to the orientation of type of piece

%

% Performs check to see what x, y translation moves are valid

% (i.e. moves on edges of board are restricted)

grid_location = piece {1 ,1};

pieceIdx = piece {1 ,3};

orientationIdx = piece {1,4};

successors = cell (1,5);

% Change the grid location only

% Jump sizes based on grid size

max_step = (H*L)/20;

step = [1 max_step];

gridChanges = [0 randi(step ,1,1);randi(step ,1,1) 0;0 -randi(step ,1,1);-

randi(step ,1,1) 0];

for i = 1:4

successors {1,i} = piece;

newGridLoc = grid_location + gridChanges(i,:);

% Check x

if newGridLoc (1) <= 0

newGridLoc (1) = 1;

elseif newGridLoc (1) > L

newGridLoc (1) = L;

end

% Check y

if newGridLoc (2) <= 0

newGridLoc (2) = 1;

elseif newGridLoc (2) > H

newGridLoc (2) = H;

end

successors {1,i}{1,1} = newGridLoc;

end

% Cycle through possible orientations

successors {1,5} = piece;

newOrientationIdx = orientationIdx + 1;

13

if size(All_blocks {1,pieceIdx },2) < newOrientationIdx

newOrientationIdx = 1;

end

successors {1 ,5}{1 ,2} = All_blocks {1,pieceIdx }{1, newOrientationIdx };

end

B.5 puzzlePieces.m

function [T_blocks ,I_blocks ,O_blocks ,J_L_blocks ,S_Z_blocks] =

puzzlePieces ()

% puzzlePieces: Will output all the different types of puzzle pieces

% represented as 1's and 0's, taking account all possible reflections or

% rotations

%

% INPUTS

%

% OUTPUTS

% T_blocks

% I_blocks

% O_blocks

% J_L_blocks

% S_Z_blocks

T_base = [1 1 1 0;

0 1 0 0];

T_blocks = {};

for i = 1:4

base = zeros (4,4);

A = rot90(T_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 1

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

if i == 2

% Column

a = base;

a(:,1) =[];

base = [a zeros (4,1)];

end

T_blocks{i} = base;

end

% I block

I_base = [1 1 1 1;

0 0 0 0];

I_blocks = {};

for i = 1:2

base = zeros (4,4);

14

A = rot90(I_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 2

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

I_blocks{i} = base;

end

% O block

O_blocks = {[1 1 0 0;

1 1 0 0

0 0 0 0

0 0 0 0]};

% J/L block

J_base = [1 1 1 0;

0 0 1 0];

L_base = [0 0 1 0;

1 1 1 0];

J_L_blocks = {};

for i = 1:4

base = zeros (4,4);

A = rot90(J_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 1

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

if i == 2

% Column

a = base;

a(:,1) =[];

base = [a zeros (4,1)];

end

J_L_blocks{i} = base;

end

for i = 1:4

base = zeros (4,4);

A = rot90(L_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 1

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

15

if i == 2

% Column

a = base;

a(:,1) =[];

base = [a zeros (4,1)];

end

J_L_blocks{end+1} = base;

end

% S/Z block

Z_base = [1 1 0 0;

0 1 1 0];

S_base = [0 1 1 0;

1 1 0 0];

S_Z_blocks = {};

for i = 1:2

base = zeros (4,4);

A = rot90(Z_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 1

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

if i == 2

% Column

a = base;

a(:,1) =[];

base = [a zeros (4,1)];

end

S_Z_blocks{i} = base;

end

for i = 1:2

base = zeros (4,4);

A = rot90(S_base ,i);

base (1: size(A,1) ,1:size(A,2)) = A;

if i == 1

% Row

a = base;

a(1,:) =[];

base = [a; zeros (1,4)];

end

if i == 2

% Column

a = base;

a(:,1) =[];

base = [a zeros (4,1)];

end

S_Z_blocks{end+1} = base;

16

end

end

17

	Solution Approach
	Examples of Code
	Running the Code
	General Notes
	Acknowledgments
	References
	Matlab Code
	assignment5.m
	createBoard.m
	evalBoard.m
	getSuccessors.m
	puzzlePieces.m

