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Part   1:   Overview   of   Team   Approach   
For  initial  localization  of  the  robot,  we  rotated  the  robot  360  degrees  and  utilized  a  Particle  Filter                   

(PF)  along  with  the  data  collected  in  that  spin.  We  chose  to  use  a  PF  for  the  initial  localization  because  it                       
was  known  that  the  robot  would  be  starting  on  a  waypoint,  and  thus  the  initial  particle  set  could  consist  of                      
particles  on  the  waypoints  with  varying  headings.  While  navigating,  we  used  an  Extended  Kalman  Filter                 
(EKF)  with  only  depth  data.  We  chose  to  use  an  EKF  because  when  the  initial  location  guess  is  good,  an                      
EKF  is  almost  always  able  to  localize  the  robot,  and  we  can  also  quantify  the  uncertainty  in  the  EKF’s                     
pose  estimate  using  the  sigma  matrix.  When  the  EKF’s  pose  estimate  reached  an  unacceptable  uncertainty                 
level,  we  chose  to  re-localize  the  robot  using  one  of  two  possible  “emergency”  Particle  Filter                 
re-localization  techniques.  The  first  emergency  PF  has  a  particle  set  of  evenly  spaced  points  within  a  1                   
meter  grid  around  the  most  recent  pose  estimate  with  varying  headings.  We  found  this  technique  to  be                   
useful  in  re-localizing  the  robot  when  the  covariance  in  x  and  y  was  very  large.  For  situations  with                    
slightly  smaller  x  and  y  covariance,  or  where  the  covariance  in  theta  exceeded  a  threshold,  we  used  a                    
similar  technique  to  the  initial  PF  localization  algorithm,  in  which  the  robot  would  spin  and  collect  data,                   
and  run  a  PF  with  the  initial  particle  set  located  on  the  most  recent  pose  guess,  with  varying  headings.  For                      
motion  planning,  the  first  assumption  we  made  was  to  give  extra  credit  (EC)  and  normal  waypoints  equal                   
weight.  The  reason  for  this  was  that  we  were  confident  in  our  localization  techniques,  and  did  not  feel  that                     
the  risk  of  getting  lost  in  a  more  challenging  part  of  the  map  (where  EC  waypoints  were  usually  located)                     
outweighed  the  bonus  points  received  from  EC  waypoints.  We  used  a  k  nearest  neighbor  PRM  with  low                   
dispersion  sampling,  because  we  would  only  have  to  generate  the  roadmap  once  at  the  beginning  of  the                   
script,  and  the  roadmap  produced  using  this  sampling  method  is  quite  sparse,  meaning  that  we  do  not                   
require  many  nodes  to  cover  the  entire  map.  Additionally,  it  only  requires  running  dijkstra’s  once  at  the                   
beginning  of  each  new  path  to  a  new  waypoint,  which  is  an  extremely  fast  algorithm.  To  decide  the  order                     
of  waypoints  (both  EC  and  normal)  we  were  to  travel  to,  we  used  a  Travelling  Salesman  Problem  (TSP)                    
solver  made  by   Joseph  Kirk ,  making  some  slight  modifications  to  tailor  his  script  for  our  application.  We                   
used   the   TSP   algorithm   because   we   wanted   to   achieve   the   shortest   possible   total   path   to   all   the   waypoints.   

  
Part   3:   Individual   Contribution   

The  majority  of  my  purely  individual  contribution  to  the  final  competition  was  in  tackling  the                 
motion  planning  challenge.  To  make  the  low-dispersion  PRM  that  we  generate  at  the  very  beginning  of                  
our  main  control  script,  I  modified  the  buildPRM  function  that  I  wrote  for  HW6.  I  changed  the  script  to                     
be  able  to  handle  maps  consisting  of  an  array  of  line  segments  rather  than  a  list  of  obstacle  vertices.                     
Additionally,  in  HW6  I  used  the  built-in  MATLAB  function  polybuffer  (Figure  1)  in  order  to  account  for                   
the  robot  radius.  Since  polybuffer  rounds  the  vertices  of  the  polygons,  each  line  segment  obstacle  would                  
be  represented  by  a  very  large  number  of  vertices.  To  increase  efficiency,  I  modified  the  code  to  convert                    
the  obstacle  line  segments  into  rectangles  (Figure  2),  which  reduced  the  number  of  obstacle  vertices  from                  
182  for  each  line  using  polybuffer,  to  only  4.  Post-processing  using  the  same  n  and  k  values  on  the  final                      
competition  map,  I  found  that  the  first  version  of  the  PRM  script  would  have  taken  nearly  2  minutes  to                     
produce  a  roadmap  whereas  the  one  using  rectangular  obstacles  only  took  a  bit  over  4  seconds  to  generate                    
(Figures  3  and  4).  Also,  since  we  had  originally  been  aiming  to  reach  every  EC  and  normal  waypoint,  I                     
found  a  script  by   Joseph  Kirk  that  finds  the  near-optimal  solution  to  a  TSP,  and  made  a  script  that  calls                      
dijkstra’s  algorithm  for  every  combination  of  normal  and  EC  waypoints  and  saves  a  matrix  of  distances                  
to  feed  into  the  TSP  script.  This  outputted  a  near  optimal  waypoint  order  for  the  specific  roadmap  we  had                     
generated.  However,  a  few  days  into  integrating  and  testing,  we  realized  that  even  if  we  localized                  
ourselves  perfectly  during  the  entire  competition,  it  would  be  near  impossible  to  reach  all  of  the                  
waypoints.  Therefore,  since  the  waypoint  order  for  a  TSP  is  circular,  I  modified  the  TSP  script  to  check                    
which  half  of  the  journey  would  be  shorter  (ie.  should  we  travel  to  the  second  waypoint  in  the  list  or  the                       
second  to  last  waypoint  in  the  list,  etc.).  By  doing  this,  I  tried  to  ensure  that  if  the  robot  ended  up  not                        
being  able  to  travel  to  all  the  waypoints,  it  would  hopefully  be  able  to  maximize  the  number  of  waypoints                     
reached,  but  in  case  it  was  able  to  reach  all  the  waypoints,  it  would  still  do  it  in  a  near  optimal  way.  I                         
would   estimate   that   in   total,   I   spent   around   35-40   hours   integrating,   testing,   debugging   and   tuning.     
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Part   2:   Flow   Chart   of   Solution   
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Part   4:   Discussion   of   Competition   Performance   
  

During  the  first  competition  run,  the  code  was  never  able  to  generate  a  valid  roadmap,  and                  
therefore  our  robot  did  not  travel  at  all.  While  tuning  the  roadmap  for  the  practice  maps,  we  found  that                     
even  for  large  n  and  k  values  that  would  work  almost  every  time,  there  were  occasionally  moments  where                    
a  valid  PRM  could  not  be  generated,  meaning  that  all  of  the  waypoints  would  not  be  reachable  using  this                     
PRM.  To  account  for  this  problem,  we  had  modified  my  TSP  solver  script  to  check  if  there  was  any                     
combination  of  waypoint  connections  that  did  not  yield  a  path.  If  so,  we  would  know  the  PRM  was  not                     
valid,  and  we  increased  the  number  of  nodes,  n,  and  generated  a  new  roadmap,  repeating  this  process  until                    
a  valid  PRM  was  generated.  This  method  allowed  us  to  initialize  n  to  a  relatively  low  value,  but  also  be                      
able  to  handle  possibly  more  complex  maps  than  the  practice  maps  we  had  tuned  n  and  k  for.  However,                     
when  tuning  our  PRM  for  the  practice  maps,  we  had  increased  the  robot  radius  for  the  buffer  from  .2  to  .3                       
meters,  to  try  to  increase  the  number  of  straight  paths  and  avoid  unnecessary  turning  at  nodes  near  each                    
other.  For  the  final  competition  map,  this  posed  a  problem  at  the  third  extra  credit  waypoint  located  at                    
(.388,  2.47)  because  as  can  be  seen  in  Figure  5,  this  made  that  section  of  the  map  inaccessible,  which                     
caused  the  PRM  to  always  be  unconnected  and  thus  our  code  continued  indefinitely  increasing  n  and                  
producing  a  new  PRM.  After  our  first  trial,  once  the  competition  map  had  been  uploaded  to  canvas,  I  tried                     
to  generate  a  PRM  using  our  script  and  realized  the  problem  was  that  we  had  increased  the  robot  radius                     
buffer.  Once  we  changed  a  single  line  of  code  in  our  PRM  builder  function  from  .3  to  .2,  the  PRM  was                       
quickly   generated   in   trial   two   using   225   nodes.     

During  the  second  trial,  the  robot  was  able  to  successfully  localize  itself,  identifying  the  correct                
starting  waypoint  and  orientation  with  the  first  guess  of  its  pose  being  (-2.974,  0.01,  6.266),  meaning  our                   
initial  guess  for  theta  was  only  about  .014  radians  off.  Including  the  first  waypoint,  we  detected  1  normal                    
waypoint  and  4  EC  waypoints,  for  a  total  of  90  points.  The  final  competition  plot  can  be  found  in  the                      
appendix  in  Figure  6.  The  EKF  with  depth  data  proved  robust  enough  to  ensure  accurate  localization                  
nearly  the  entire  time.  We  only  had  to  re-localize  using  the  spinning  emergency  PF  method  two  times,                   
meaning  that  for  the  rest  of  the  second  run,  our  covariance  in  x  and  y  position  and  in  angular  orientation                      
never  exceeded  0.1.  Even  when  the  covariance  exceeded  acceptable  levels  and  we  had  to  use  the                  
emergency  PF,  we  were  able  to  accurately  estimate  our  pose  again.  Since  the  EC  waypoints  were  placed                   
in  locations  where  the  EKF  would  have  more  difficulty  localizing  the  robot,  the  performance  of  our                  
localization  methods  in  visiting  the  4  EC  waypoints  is  very  good.  This  is  likely  due  to  the  fact  that  in  the                       
noise  configuration  file  used  during  the  competition,  the  depth  noise  was  zero.  When  I  added  noise  to                   
rsdepth  in  the  configuration  file  and  ran  our  control  code  on  the  final  competition  map,  I  found  that  with  a                      
mean  of  .02  and  a  standard  deviation  of  .01,  our  localization  techniques  still  proved  robust  enough,  and                   
the  robot  was  able  to  visit  a  total  of  4  normal  waypoints  and  2  EC  waypoints  (Figure  7).  I  increased  the                       
noise  on  the  depth  measurements  with  the  same  mean  but  a  standard  deviation  of  .04,  and  although  it                    
visited  only  3  normal  waypoints  and  1  EC  waypoint  because  it  had  to  call  the  emergency  PF  multiple                    
times,  it  still  always  managed  to  re-localize  (Figure  8).  However,  I  found  that  for  any  noise  in  depth  with                     
a  standard  deviation  exceeding  .05,  the  EKF  and  PF  had  too  much  trouble  with  localization.  In  this  case                    
the  robot  was  constantly  calling  the  emergency  PF  and  was  unable  to  reach  even  a  single  waypoint.  On  a                     
separate  note,  I  believe  that  the  good  performance  of  the  EKF  may  have  also  partially  been  due  to  a  small                      
check  within  the  EKF  script  which  removes  measurements  that  are  over  3  standard  deviations  away  from                  
the  expected  measurements.  This  seemed  to  help  with  situations  where  the  robot  was  partially  facing  an                  
opening   in   a   wall,   or   a   corner.   

To  improve  our  localization  even  further,  and  potentially  avoid  any  emergency  PF  executions,  we                
could  have  also  used  beacon  data  in  our  EKF.  The  only  two  times  we  had  to  re-localize  was  at  the  second                       
EC  waypoint  (-4.46,  -2.56).  When  our  emergency  PF  was  called,  beacon  9  was  clearly  in  view,  and  thus                    
we  would  likely  have  not  even  needed  this  re-localization  technique  if  we  had  incorporated  beacon  data                  
into  our  EKF.  The  emergency  PF  takes  approximately  15  seconds  to  execute  in  total,  which  means  that  we                    
could  have  saved  about  half  a  minute  on  this  run.  This  extra  time  might  have  made  it  possible  to  visit  an                       
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additional  waypoint,  which,  if  our  trial  would  have  counted,  could  have  made  the  difference  between  first                  
and   second   place.     

A  modification  that  I  would  have  liked  to  make  to  our  overall  algorithm  was  to  use  a  different                    
method  in  choosing  which  waypoints  to  visit,  and  in  what  order.  As  mentioned  in  Part  1,  we  originally                    
had  decided  to  use  a  TSP  solver  because  we  believed  that  if  our  localization  was  working  well,  we  would                     
be  able  to  reach  every  normal  and  EC  waypoint.  However,  given  the  size  of  the  map,  the  number  of                     
waypoints,  and  the  limit  on  the  maximum  travelling  velocity  of  the  robot,  I  believe  that  it  would  be  near                     
impossible  to  reach  all  the  waypoints  within  the  time  limit.  Therefore  we  might  have  been  able  to  visit                    
more  waypoints  if  we  had  chosen  a  different  motion  planning  algorithm.  For  example  at  each  waypoint                  
we  could  have  chosen  to  visit  the  closest  EC  or  normal  waypoint  (using  dijkstra’s  algorithm)  that  we  had                    
not  yet  visited.  This  approach  would  still  not  have  guaranteed  a  better  performance  or  total  shorter  path  if                    
we  had  gotten  unlucky  with  the  waypoint  start  location.  After  the  competition,  when  thinking  about                 
possible  changes  that  could  have  been  made  to  the  TSP  solver,  I  also  realized  that  there  was  a  bug  in  the                       
TSP  solver  that  we  ran  during  the  competition.  In  modifying  the  TSP  solver  to  account  for  an  invalid                    
roadmap,  we  made  modifications  to  the  structure  of  the  script  that  caused  the  distance  matrix  described  in                   
Part  2  to  be  incorrect.  The  bug  caused  only  the  first  row  in  the  matrix  to  be  nonzero,  with  the  result  that                        
the  waypoint  order  produced  by  the  TSP  solver  was  simply  the  chronological  order  of  the  indexes  in  the                    
array  TotWaypoints  (10x2  array  of  normal  and  EC  waypoints),  beginning  with  the  waypoint  the  robot                 
starts  at.  For  ease  of  visualization  of  TotWaypoint  indices,  please  see  Figure  9.  To  clarify,  for  the                   
competition  map,  starting  at  the  5th  normal  waypoint,  the  waypoint  order  produced  was  [5;  6;  7;  8;  9;  10;                     
1;  2;  3;  4].  This  means  that  the  order  the  waypoints  will  be  visited  will  begin  at  the  5th  normal  waypoint,                       
then  the  6th  normal  waypoint,  then  the  first  EC  waypoint,  etc.  The  reason  that  we  still  performed  fairly                    
well  despite  the  travelling  salesman  problem  not  actually  being  applied  at  all  to  our  motion  planning  was                   
mostly  luck  with  the  initial  starting  waypoint.  It  turns  out  that  at  least  the  first  half  of  the  path  produced                      
by  a  chronological  waypoint  order  starting  at  5  is  not  excessively  inefficient.  However  if  we  had  started  at                    
the  sixth  normal  waypoint,  the  order  of  waypoints  would  have  been  [6;  7;  8;  9;  10;  1;  2;  3;  4;  5],  which                        
would  have  caused  the  robot  to  travel  unnecessarily  across  the  map.  Using  the  TSP  solver  with  the  bug                    
starting  at  normal  waypoint  number  6,  the  path  in  Figure  10  was  produced,  in  which  the  robot  is  only  able                      
to  reach  1  normal  waypoint  and  2  EC  waypoints,  and  we  can  see  that  it  practically  passes  through  the  5th                      
normal  waypoint,  but  doesn’t  detect  it  because  according  to  the  order  produced,  it  will  visit  this  waypoint                   
at   the   very   end.   

Once  I  fixed  this  bug,  so  that  the  TSP  solver  actually  produced  a  waypoint  order  that  would  try  to                     
minimize  the  total  distance  travelled  to  reach  all  of  the  waypoints,  the  robot  was  able  to  visit  4  normal                     
waypoints  and  2  EC  waypoints  (Figure  11).  Indeed,  the  robot  was  able  to  reach  more  waypoints  with  this                    
run,  but  actually  would  have  received  a  lower  score  than  the  second  run  in  the  final  competition.  As                    
mentioned  earlier,  we  were  clearly  quite  fortunate  with  the  initial  waypoint  selection  in  the  second  trial.                  
Since  the  fixed  version  of  the  TSP  solver  still  would  not  have  earned  enough  points  to  win  the                    
competition,  I  think  that  again,  the  better  motion  planning  algorithm  may  have  actually  been  simply  to                  
travel  to  the  closest  normal  or  EC  waypoint  not  yet  visited.  We  could  also  have  tried  to  set  up  a  distance                       
weighting  factor  based  on  if  a  waypoint  was  an  extra  credit  waypoint  or  a  normal  waypoint.  To  slightly                    
prioritize  extra  credit  waypoints  for  the  point  bonus,  a  factor  greater  than  1  could  have  been  applied  to                    
distances   from   one   normal   waypoint   to   another.   This   would   likely   have   required   tuning   though.   
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Appendix   
  

  
Figure   1:   Robot   radius   buffer   using   polybuffer.m   

  

  
Figure   2:   Robot   radius   buffer   using   rectangles   
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Figure   3:   Computation   time   for   original   PRM   builder   using   polybuffer   
  

  
  

Figure   4:   Computation   time   for   improved   PRM   builder   using   rectangular   obstacles     
  

  
Figure   5:   EC   waypoint   number   3,   located   at   (.388,   2.47)   inaccessible   
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Figure   6:   Final   competition   plot   

  

  
Figure   7:   Trial   run   with   depth   noise,   mean   =   .02,   standard   deviation   =   .01   
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Figure   8:   Trial   run   with   depth   noise,   mean   =   .02,   standard   deviation   =   .04   

  

  
Figure   9:   Indices   in   TotWaypoints   
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Figure   10:   Faulty   TSP   starting   at   the   sixth   normal   waypoint   

  
  

  
Figure   11:   Fixed   TSP   visited   6   total   waypoints   (normal   &   EC)   
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